Abstract
Two conical double-ridged horn (DRH) antennas for K and Ka frequency bands are presented. Detailed simulation and experimental investigations are conducted to understand their behaviors and optimize for broadband operation. The designed antennas were fabricated with 0.01 mm accuracy and satisfactory agreement of computer simulations and experimental results was obtained. The designed conical DRH antennas have voltage standing wave ratio (VSWR) less than 2.1 and 2.2 for the frequency ranges of 18–26.5 GHz (K band) and 26.5–40 GHz (Ka band), respectively. Meanwhile, the proposed antennas exhibit low cross-polarization, low sidelobe level, and simultaneously achieve slant polarization as well as symmetrical radiation patterns in the entire operating bandwidth. An exponential impedance tapering is used at the flare section of the horns. Moreover, a new cavity back with a conical structure is used to improve the VSWR. Numerous simulations via Ansoft HFSS and CST Microwave Studio CAD tools have been made to optimize the VSWR performance of the designed antennas. Simulation results show that the VSWR of the proposed antennas is sensitive to the probe spacing from the ridge edge and the cavity back structure. The designed conical DRH antennas are most suitable as a feed for the reflectors of radar systems and satellite applications. Results for VSWR, far-field E-plane and H-plane radiation patterns, and gain of the designed antennas are presented and discussed. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of RF and Microwave Computer-Aided Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.