Abstract

Cardiovascular physiology can be simulated in patient simulators but is limited to the simulator monitor curves and parameters, missing some important data that today is known as essential to fluid management and therapeutic decision in critical ill and high-risk surgical patients. Our main objective was to project and implement a unidirectional communication channel between a pre-existing patient simulator and a minimally invasive cardiac output monitor (LiDCO rapid®); a monitor that connects to real patients and interprets the arterial wave. To connect the patient simulator to the hemodynamic monitor, firstly, we had to assess both systems and design a communication channel between them. LiDCO monitor accepts as an input an analog voltage varying between 0 V and 5 V and that every volt is directly proportional to a blood pressure (mmHg) value ranging from 0 mmHg (0 V) to 500 mmHg (5 V). A Raspberry Pi 0 (Rpi0) with a WIFI chip integrated was needed and added to a digital analogue converter connected to the board. We designed a system that allowed us to collect, interpret and modify data, and feed it to the LiDCO rapid® monitor. We had developed a Python® script with three independent threads and a circular buffer to handle the data transmission between both systems. The LiDCO hemodynamic monitor successfully received data sent from our setup like a real patient arterial wave pulse and interpreted it to estimate several hemodynamic parameters, as cardiac output, stroke volume, systemic vascular resistance, pulse pressure variation, and stroke volume variation. The connection between the patient simulator and the LiDCO monitor is being used to create arterial curves and other hemodynamic parameters for clinical scenarios where residents and anesthesiologists can simulate a variety of unstable hemodynamic conditions, preparing them to face similar situations with real patients in a safe environment and with their own monitors.

Highlights

  • Technological advances in medicine are an actual fact and the new generation of anesthesia clinicians must be prepared, since the very beginning of their residence, to use advanced technology in several equipment: monitors and patient ventilators, ultrasound and airway management devices

  • The patient simulator data can be accessed by connecting the Raspberry Pi and the patient simulator control unit over its internal network and doing a Structured query language (SQL) (Structured Query Language) request to its main processing unit, obtaining the systolic blood pressure (SBP), diastolic blood pressure (DBP), and the heart rate (HR), values it generates once a second

  • We worked with the LiDCO development team and established that the LiDCO monitor accepts as an input an analog voltage varying between 0 V and 5 V and that every volt is directly proportional to a blood pressure (BP) value ranging from 0 mmHg (0 V) to 500 mmHg (5 V)

Read more

Summary

Introduction

Technological advances in medicine are an actual fact and the new generation of anesthesia clinicians must be prepared, since the very beginning of their residence, to use advanced technology in several equipment: monitors and patient ventilators, ultrasound and airway management devices. Experienced anesthesiologists need to be updated and must know how to use the new devices and how to teach to younger clinicians and residents. Active learning strategies and simulation technologies are already used with medical students [1, 2] and residents [3], and their benefits and advantages on students’ learning cognitive and behavioural skills are well recognised [4, 5]. Simulation-based learning can be helpful to develop healthcare professional’s knowledge, skills, and attitudes while protecting patients from unnecessary risks [6]. Anesthesiologists pioneered the use of patient simulators in training programs all over the world [7, 8]. In Portugal, since 2018, the Anesthesiology Medical Council established a program with recommended courses using simulation as a teaching tool

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.