Abstract

An artificial neural network (ANN) trained by different learning algorithms implemented to computing the operating frequency of E-shaped patch antennas (EPAs) is designed in this study. The ANN model is built on a multilayered perceptron (MLP) based on feed forward back propagation (FFBP). A data pool is firstly constituted for training and testing the ANN model through 144 EPA simulations using the moment method-based HyperLynx® 3D EM software in terms of the operating frequency. The ANN model is then trained via 130 data, and the accuracy of the model is tested through 14 data of simulated EPAs. The ANN is trained by 8 different learning algorithms to achieve a robust model. A benchmark which compares the learning algorithms against each other according to percentage error is revealed. The validity of the ANN is corroborated by simulated and measured data reported in the literature. It shows that the ANN model trained by Levenberg–Marquardt learning algorithm computes the closest results. The proposed ANN model can be successfully exploited to analyze the EPAs in views of the operating frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call