Abstract

Supercritical carbon dioxide (sCO2) power cycles require high compressor efficiency at both the design point and over a wide operating range. Increasing the compressor efficiency and range helps maximize the power output of the cycle and allows operation over a broader range of transient and part-load operating conditions. For sCO2 cycles operating with compressor inlets near the critical point, large variations in fluid properties are possible with small changes in temperature or pressure. This leads to particular challenges for air-cooled cycles where compressor inlet temperature and associated fluid density are subject to daily and seasonal variations as well as transient events. Design and off-design operating requirements for a wide-range compressor impeller are presented where the impeller is implemented on an integrally geared compressor–expander concept for a high temperature sCO2 recompression cycle. In order to satisfy the range and efficiency requirements of the cycle, a novel compressor stage design incorporating a semi-open impeller concept with a passive recirculating casing treatment is presented that mitigates inducer stall and extends the low flow operating range. The stage design also incorporates splitter blades and a vaneless diffuser to maximize efficiency and operating range. These advanced impeller design features are enabled through the use of direct metal laser sintering (DMLS) manufacturing. The resulting design increases the range from 45% to 73% relative to a conventional closed impeller design while maintaining high design point efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call