Abstract
This chapter presents a method for generating binary and multiclass Support Vector Machine (SVM) classifier with multiplierless kernel function. This design provides reduced power, area and reduced cost due to the use of multiplierless kernel operation. Binary SVM classifier classifies two groups of linearly or nonlinearly separable data while the multiclass classification provides classification of three nonlinearly separable data. Here, at first SVM classifier is trained for different classification problems and then the extracted training parameters are used in the testing phase of the same. The dataflow from all the processing elements (PEs) are parallely supported by systolic array. This systolic array architecture provides faster processing of the whole system design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.