Abstract

This paper aims at evaluating the methods of multiclass support vector machines(SVMs) for effective use in distance relay coordination. Also, it describes a strategy of supportive systems to aid the conventional protection philosophy in combating situations where protection systems have maloperated and/or information is missing and provide selective and secure coordinations. SVMs have considerable potential as zone classifiers of distance relay coordination. This typically requires a multiclass SVM classifier to effectively analyze/build the underlying concept between reach of different zones and the apparent impedance trajectory during fault. Several methods have been proposed for multiclass classification where typically several binary SVM classifiers are combined together. Some authors have extended binary SVM classification to one-step single optimization operation considering all classes at once. In this paper, one-step multiclass classification, one-against-all, and one-against-one multiclass methods are compared for their performance with respect to accuracy, number of iterations, number of support vectors, training, and testing time. The performance analysis of these three methods is presented on three data sets belonging to training and testing patterns of three supportive systems for a region and part of a network, which is an equivalent 526-bus system of the practical Indian Western grid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call