Abstract
This paper introduces the design, manufacture, dynamic analysis, and experimental results of a piezoelectric pump driven by the inertial force of a vibrator supported by a slotted beam. The piezoelectric vibrator is composed of a mass block, displacement amplifier, and slotted beam fixed with both ends. In the resonant mode, the displacement amplifier drives the slotted beam to work, and produces amplitude and inertial force. In this paper, the design of the slotted beam optimizes the output of the displacement amplifier. In addition, the slotted beam supports the displacement amplifier and increases the elastic output. The pump body adopts polydimethylsiloxane (PDMS) check valves and compressible spaces to improve the output performance. This research studies the influence of stiffness and mass on the output performance by qualitatively analyzing the inertial output force of the vibrator. Nine kinds of slotted beams with different stiffnesses and different mass blocks are designed for comparison. Thereafter, an optimal structure of the piezoelectric pump is selected. The experimental results show that under a driving voltage of 700 Vpp , the maximum flowrate is 441 mL min−1 and the maximum back pressure is 25.3 kPa.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have