Abstract

Thermoelastic damping is one of the dominant mechanisms of structural damping in vacuum-operated microresonators. A three dimensional numerical model based on the finite element method is used for simulating thermoelastic damping in clamped–clamped microelectromechanical beam resonators. In this regards, both simple and slotted beam are considered. To understand the effect of slot positions and sizes on the resonator performance, resonant frequency and thermoelastic quality factor are calculated for both simple and slotted beams for a wide range of beam length from 10 to 400 µm. Punching slots in the resonator beam reduces the stiffness and mass of the beam which affect the resonant frequency. In addition thermo-mechanical coupling mechanisms of the resonator are affected by the slots which improve the thermoelastic quality factor. For most of the beam lengths, it is shown that the slots at the beam-anchor interface region, where the strain is high, are more effectively enhanced the thermoelastic quality factor than one at the centre of the beam region. However, the highest resonance frequency is achieved with the slots at the center region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call