Abstract

A broadband dual-polarized omnidirectional antenna is presented. The proposed antenna consists of two parts, an asymmetric biconical antenna and a cylindrical multilayer polarizer. To have an almost perfect omnidirectional radiation pattern in the horizontal plane and the main radiating beam position at around i¾?=75i¾?, in the elevation plane, the asymmetric biconical antenna is used. Moreover, to provide dual polarization performance over the 2-18 GHz operational bandwidth, a multilayer polarizer is designed and optimized. Numerous simulations via Ansoft HFSS and CST microwave Studio CAD tools have been made to optimize the radiation pattern, gain, polarization, and the reflection coefficient of the antenna. Simulation results show that the radiation characteristics of the proposed antenna are extremely sensitive to the configuration and dimensional parameters of the multilayer polarizer. The designed antenna was fabricated with high mechanical accuracy and measured. Satisfactory agreement of computer simulations and experimental results was obtained. The main feature that distinguishes this antenna from the previous designs is the ability to provide the omnidirectional radiation pattern with small ripples, dual polarizations performance, and the wide bandwidth simultaneously. Based on these characteristics, the proposed antenna can be useful for broadband communication applications. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:591-600, 2015.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call