Abstract

This paper demonstrates the design and implementation of a 5-GHz frequency synthesizer using 55-nm complementary metal-oxide semiconductor technology. The proposed synthesizer achieves an ultra-low 0.35-ps jitter with a high-resolution adaptive frequency calibration scheme that automatically chooses frequency-tuning curves and improves calibration accuracy. The proposed synthesizer employs a high-Q LC voltage-controlled oscillator, constant bandwidth, low, and even $$K_{\mathrm{VCO}}$$ technique using thermometer-weighted capacitor calibration, a low-power divider, and a charge-pump (CP) circuit to achieve low jitter. The oscillator comprises a modified digitally controlled capacitor and varactor array, which extend the tuning range and minimize the phase noise. A matched differential CP is adopted to reduce reference spurs and phase-noise performance. The proposed frequency synthesizer achieves an output frequency of 4.4–5.6 GHz with a chip area of $$0.33\hbox { mm}^{2}$$ . The power consumption is 20 mW from a 1.2-V supply at 5 GHz, and the reference spur is −67.99 dBc. The measured root mean-square random jitter and phase noise are 0.35 ps and −110.04 dBc/Hz at 1 MHz, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.