Abstract

Carbon-nanotube (CNT) field-effect transistors (CNFETs) are promising extensions to silicon CMOS. Simulations show that CNFET inverters fabricated with a perfect CNFET technology have 13 times better energy delay product compared with 32-nm silicon CMOS inverters. The following two fundamental challenges prevent the fabrication of CNFET circuits with the aforementioned advantages: 1) misaligned and mispositioned CNTs and 2) metallic CNTs. Misaligned and mispositioned CNTs can cause incorrect functionality. This paper presents a technique for designing arbitrary logic functions using CNFET circuits that are guaranteed to implement correct functions even in the presence of a large number of misaligned and mispositioned CNTs. Experimental demonstration of misaligned and mispositioned CNT-immune logic structures is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.