Abstract

In this paper we describe in detail a new method for the single gate-level design error diagnosis in combinational circuits. Distinctive features of the method are hierarchical approach (the localizing procedure starts at the macro level and finishes at the gate level), use of stuck-at fault model (it is mapped into design error domain only in the end), and design error diagnostic procedure that uses only test patterns generated by conventional gate-level stuck-at fault test pattern generators (ATPG). No special diagnostic tests are used because they are much more time consuming. Binary decision diagrams (BDD) are exploited for representing and localizing stuck-at faults on the higher signal path level. On the basis of detected faulty signal paths, suspected stuck-at faults at gate inputs are calculated, and then mapped into suspected design error(s). This method is enhanced compared to our previous work. It is applicable to redundant circuits and allows using incomplete tests for error diagnosis. Experimental data on ISCAS benchmark circuits shows the advantage of the proposed method compared to the known algorithms of design error diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call