Abstract
This paper discusses, both qualitatively and quantitatively, the operation and the design principle of current surface acoustic wave (SAW) resonators in which the internal reflection within interdigital transducers (IDTs) is not negligible and lower capacitance ratio is necessary. For the purpose, the p-matrix expression is used with the help of the coupling-of-modes theory. The internal reflection causes: deformation of the IDT passband shape, frequency dependence of the effective SAW velocity within IDTs, and suppression of higher-order resonances. It is shown that these features can be effectively used to enhance performances of both one-port SAW resonators and two-port double-mode SAW (DMS) filters. In addition, under proper designs accounting for the internal reflection, most of all structural discontinuities can be removed, and is most preferable for the reduced scattering loss at the discontinuity. Design criteria also are presented for DMS filters of wide bandwidth, and it is demonstrated how device performances are improved by proper design accounting for the criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.