Abstract

In this paper we have analyzed the possibility of enhancing spin-polarization performance of conventional nonmagnetic semiconductor heterostructures which rely on the resonant tunneling mechanism. Both the bulk inversion asymmetry (BIA) and the structural inversion asymmetry (SIA) effects are taken into account in the presented model. The aim is to engineer nanostructures with maximal degree of spin separation in the electron tunneling current, which might be useful in studying various spin-related phenomena in semiconductor materials. Spin-polarization status of the current, in the devices under consideration, should be controllable by moderate emitter-collector voltages. Additionally, the spin orbit-interactions affect the dwell times of electrons in spin-up and spin-down states, therefore the prospects of spin-filtering in the time domain may be considered as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.