Abstract
Expanding the travel mileage of power batteries is of great significance for electric vehicles (EVs). The solar battery pack is considered as a promising supplement to the battery management system (BMS) of EVs but integrating solar power into EVs remains a challenge. This paper proposes a BMS that coordinates the solar panels and the lithium battery system. The proposed BMS mainly involves three aspects. Firstly, an equivalent second-order resistance-capacitance model is established and afterwards is identified by using an improved recursive least squares algorithm. Then, the maximum power prediction strategy is developed based on the advanced state of charge (SOC) algorithm and the available solar energy estimation algorithm. Thirdly, a multi-stage constant current charging strategy based on the adaptive genetic algorithm is designed to optimize the battery temperature rise and charging time simultaneously. The proposed BMS is validated by the experiment on a real-world solar-assisted EV. The results indicate that the proposed power prediction strategy can accurately estimate the available power for EVs. Compared with the widely-used charging method, the developed optimal charging strategy reduces the charging time and temperature rise by 7%–11% and 36%–45%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.