Abstract
A dual-band Relativistic Backward Wave Oscillator (RBWO) has been designed and simulated under the lowest magnetic field using a finite difference time domain (FDTD) based 3D electromagnetic code. The dual-band oscillations were obtained by cascading two slow-wave structures (SWS) with the same transverse dimensions separated by a drift section. To reflect the dual-band microwave of the backward TM<inf>01</inf> mode into a forward TM<inf>01</inf> wave towards the collector, a rectangular resonant reflector (RR) was used. The effect of cyclotron and Cerenkov absorption on the dual-band frequency generation and average RF output power was presented to identify the operating magnetic field. An average RF output power ∼275 MW was predicted at both ∼3.6 GHz and ∼4.5 GHz with a magnetic field of ∼0.25 T.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have