Abstract

An X-band dual-mode relativistic backward wave oscillator (RBWO) operating at low magnetic field is presented in this paper. Three new design principles are introduced in the device. First, the electron beam interacts with TM01 mode and TM02 mode simultaneously, rather than with a fixed single mode. Second, the device outputs with mixed modes, rather than with a pure mode. Third, an internal reflector inserted into the annular cathode, rather than a long resonant reflector before the slow-wave structure, is adopted to reflect part of the backward wave. Accordingly, the beam–wave interaction efficiency is increased significantly and the whole device is very compact. The particle in cell simulation results reveal that at a magnetic field of 0.64 T, the output microwave power is 4.8 GW and the conversion efficiency is up to 44%. In the experiment, at a guiding magnetic field of 0.66 T, a microwave pulse with power of 4.6 GW, frequency of 9.96 GHz, pulse duration of 42 ns, and efficiency of 42% was generated when the diode voltage was 880 kV and beam current was 12.5 kA, which agree well with the simulation results. Furthermore, as the diode voltage was 1.17 MV, a highest microwave power of 7.6 GW was achieved. This is a record of high efficiency and high power of microwave generation in an X-band RBWO operating at low magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call