Abstract
Complementary Metal Oxide Semiconductor (CMOS) has always remained the dominant integrated circuit technology specifically for designing digital circuits. This paper examines the modelling (utilizing $\alpha$-power based MOSFET model), simulation (utilizing HSPICE simulation) and optimization (utilizing Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) techniques) of ultradeep submicron CMOS based digital inverter, performs insightful analysis and extracts formulas for the optimal transistor sizing. Additionally, the study serves as an implementation forum for the thermal analysis of transient characteristics of CMOS inverters at the ultradeep submicron technology node (at 300K and 400K). The results lie within the acceptable range of 1-10\%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.