Abstract

An index guiding photonic crystal fiber used in gas sensing applications is presented. The dependency of the confinement loss and relative sensitivity on the fiber parameters and wavelength is numerically investigated by using the full-vectorial finite element method (FEM). The simulations showed that the gas sensing sensitivity increased with an increase in the core diameter and a decrease in the distance between centers of two adjacent holes. Increasing the hole size of two outer cladding rings, this structure simultaneously showed up to 10% improved sensitivity, and the confinement loss reached 6×10−4 times less than that of the prior sensor at the wavelength of 1.5 μm. This proved the ability of this fiber used in gas and chemicals sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.