Abstract

A new design of photonic crystal fiber based on octagonal array of air holes in the silica background is proposed for using as a sensor node in the optical network protection system of gas pipelines. The aim of our design is achieving more sensitivity and lowering the confinement loss. In addition, introducing a hollow high index ring with an air hole in the center of fiber simultaneously enhances the relative sensitivity and achieves low confinement loss. The dependence of sensing properties on the fiber parameters is numerically investigated by finite element method (FEM). We achieve the optimum design that has the relative sensitivity of 9.33% and the confinement loss of 6.8×10-4 dB/m, at wavelength of λ=1.5μm. The results prove the ability of the proposed fiber in the optical wireless sensor networks as a gas or liquid sensor nod.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.