Abstract

Investigation and analysis of a ferroelectric material–based dopingless nanotube tunnel field-effect transistor are conducted using a lead zirconate titanate (PZT) gate stack to induce negative capacitance in the device. Landau–Khalatnikov equations are used in deriving the parameter values of the ferroelectric material to ensure accurate results. The nanotube structure of the tunnel field-effect transistor allows for better electrostatic control owing to its gate-all-around structure. Incorporation of negative capacitance further reduces the voltage supply requirement and power consumption of the structure while simultaneously improving switching. In addition, the device is studied for varying thicknesses of the dielectric PZT material. The threshold voltage of the device under study was calculated as 0.281 V, and the average subthreshold slope of the device was reduced to 18.271 mV/decade, far below the thermionic limit of 60 mV/decade.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.