Abstract

High sensitivity represents one of the main goals that sensing devices need to satisfy for their applications. This work presents to the best of our knowledge the first integrated Mach-Zehnder interferometer (MZI) embedded in soda-lime glass with comparable sensitivity to silicon-on-insulator (SOI) devices. We manufactured the MZIs by the femtosecond direct laser writing (FDLW) technique and characterized them with temperature. Four buried MZIs were manufactured by slightly increasing the optical path due to separation between the arms of the interferometer (Δ s). We achieved a fringe shift of ∼8n m for an increase of 0.18µm. We have characterized one of these devices with temperature from 30°C to 70°C obtaining a sensitivity of ∼28p m/ ∘ C. We improved the sensitivity of the device to ∼54p m/ ∘ C due to the advantage of the unique three-dimensional (3D) capabilities that FDLW provides, overcoming the characteristically low thermo-optic coefficient of soda-lime glass just by rotating the MZI structure 11°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.