Abstract
Radio-frequency (RF) micro-electro-mechanical-system (MEMS) switches are widely used in communication devices and test instruments. In this paper, we demonstrate the structural design and optimization of a novel RF MEMS switch with a straight top electrode. The insertion loss, isolation, actuator voltage, and stress distribution of the switch are optimized and explored simultaneously by HFSS and COMSOL software, taking into account both its RF and mechanical properties. Based on the optimized results, a switch was fabricated by a micromachining process compatible with conventional IC processes. The RF performance in the DC to 18 GHz range was measured with a vector network analyzer, showing isolation of more than 21.28 dB over the entire operating frequency range. Moreover, the required actuation voltage was about 9.9 V, and the switching time was approximately 33 μs. A maximum lifetime of 109 switching cycles was obtained. Additionally, the dimension of the sample is 1.8 mm × 1.8 mm × 0.3 mm, which might find application in the current stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.