Abstract
Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment, micromanipulation, and noninvasive surgery inside the body. Untethered microrobot applications can benefit from haptic technology and telecommunication, enabling telemedical micro-manipulation. Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications. Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots. The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids. The magnetic microrobots can be controlled remotely, and the haptic interactions with the remote environment can be felt in real time. A time-domain passivity controller is applied to overcome network delay and ensure stability of communication. This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids. Additionally, it demonstrates that microrobots can group together to transport multiple larger objects, move through microfluidic channels for detailed tasks, and use a novel method for disassembly, greatly expanding their range of use in microscale operations. Remote medical treatment in multiple locations, remote delivery of medication without the need for physical penetration of the skin, and remotely controlled cell manipulations are some of the possible uses of the proposed technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.