Abstract

Viral infection may be a serious threat for human beings. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly transmissible virus causing coronavirus disease 2019 (COVID-19) in humans and creating a universal pandemic outbreak. The current methods for detection of SARS-CoV-2 include real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and loop-mediated isothermal amplification (LAMP). Though the methods are widely used for the diagnosis of COVID-19, they too have their limitations such as time-consuming process, sophisticated instrumental setup, which requires highly skilled personnel for operation, and prevalence of false positive/negative reports. Therefore, there is a pressing need to develop alternative tools such as point-of-care testing (POCT) devices to detect SARS-CoV-2 rapidly, accurately, and user-friendly. Here, the authors propose a one-step diagnostic method using aptamer-based sensing technology. The intended design of aptamer-based biosensors (also known as aptasensors) utilizes the optical properties of gold nanoparticles (AuNP) conjugated with angiotensin-converting enzyme-2 (ACE-2) aptamers targeting SARS-CoV-2 using lateral flow assay (LFA). This study leads to the development of portable nanoscale aptasensors for viral diagnostics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call