Abstract

This paper describes the design, fabrication, and characterization of a two-metal layer RDL structure at 40 um pitch on thin glass interposers. Such an RDL structure is targeted at 2.5D glass interposer packages to achieve up to 1 TB/s die-to-die bandwidth and off-interposer data rates greater than 400 Gb/s, driven by consumer demand of online services for mobile devices. Advanced packaging architectures including 2.5D and 3D interposers require fine line lithography beyond the capabilities of current organic package substrates. Although silicon interposers fabricated using back-end-of-line processes can achieve these RDL wiring densities, they suffer from high electrical loss and high cost. Organic interposers with high wiring densities have also been demonstrated recently using a single sided thin film process. This paper goes beyond silicon and organic interposers in demonstrating fine pitch RDL on glass interposers fabricated by low cost, double sided, and panel-scalable processes. The high modulus and smooth surface of glass helps to achieve lithographic pitch close to that of silicon. Furthermore, the low loss tangent of glass helps in reducing dielectric losses, thus improving high-speed signal propagation. A semi-additive process flow and projection excimer laser ablation was used to fabricate two-metal layer RDL structures and bare glass RDL layers. A minimum of 3 um lithography and 20 um mico-via pitch was achieved. High-frequency characterization of these RDL structures demonstrated single-ended insertion losses of −0.097 dB/mm at f = 1 GHz and differential insertion losses of −0.05 dB/mm at f = 14 GHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call