Abstract
This paper presents the design and characterization of a 24-GS/s 3-bit single-core flash analog-to-digital converter (ADC) in 28-nm low-power digital CMOS. It shows the design study of the track-and-hold circuit and subsequent buffer stage and provides equations for bandwidth calculations without extensive circuit simulations. These results are used to target leading-edge speed performance for a single ADC core. The ADC is capable of achieving its full sampling rate without time interleaving, which makes it the fastest single-core ADC in CMOS reported to date to the best of our knowledge. With a power consumption of 0.4 W and an effective number of bits of 2.2 at 24 GS/s, the ADC achieves a figure of merit of 3.6 pJ per conversion step while occupying an active area of ${\hbox{0.12 mm}}^{2}$ . Due to its high sampling frequency this ADC can enable ultra-high-speed ADC systems when combined with moderate time interleaving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.