Abstract
Monolithic integration of Microelectromechanical Systems (MEMS) directly within CMOS technology offers enhanced functionality for integrated circuits (IC) and the potential improvement of system-level performance for MEMS devices in close proximity to biasing and sense circuits. While the bulk of CMOS-MEMS solutions involve post-processing of CMOS chips to define freely-suspended MEMS structures, there are key applications and conditions under which a solid, unreleased acoustic structure composed of the CMOS stack is preferred. Unreleased CMOS-MEMS devices benefit from lower barrier-to-entry with no post-processing of the CMOS chip, simplified packaging, robustness under acceleration and shock, stress gradient insensitivity, and opportunities for frequency scaling. This paper provides a review of advances in unreleased CMOS-MEMS devices over the past decade, with focus on dispersion engineering of guided waves in CMOS, acoustic confinement, CMOS-MEMS transducers, and large signal modeling. We discuss performance limits with standard capacitive transduction, with emphasis on performance boost with emerging CMOS materials including ferroelectrics under development for memory.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have