Abstract

Electric vehicles are the future of mobility solutions. The electric vehicles are driven by an electric motor with the help of a power electronic interface. The power electronic interface needs to be designed in an efficient way both in mechanical and electrical aspects. This paper proposes the concept of design, simulation and analysis of a 10 kW Multi-Device Interleaved DC-DC Boost Converter (MDIBC) to drive a 4 kW Induction Motor. The motor is driven from the MDIBC through an inverter with SPWM technique. The variation in DC link voltage due to motor is controlled and stabilized to give a constant DC of 400 V. MDIBC consists of semi-controlled switches topology excited by Phase Shifted PWM technique to reduce the ripple current in interleaving inductors. The dual loop control methodology using PI controller is adopted to reduce the ripple in input inductor current and DC link voltage. The open loop simulation and closed loop simulation are done in MATLAB Simulink environment. The simulation results show that the overshoots and steady state error in inductor currents and output voltage are reduced in addition with reduction in current and voltage ripples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.