Abstract

In order to address the issue of a solar utilization system with low efficiency, this paper designs a new solar conversion system based on photovoltaic concentration and spectral splitting. The system concentrates sunlight through a Fresnel lens and uses a hollow concave cavity to evenly distribute the incident energy flow. The spectral splitting medium separates the useful irradiance for the PV cell from those wavelengths that are more suited to heat generation. By considering the available wavelength of photovoltaic cells, the GaAs cell and a ZnO nanofluid were selected for this paper. It was found that installing the hollow concave cavity improved the spot uniformity of the PV cell surface by 17%. The output efficiency of the system under various circumstances was analyzed. The results show that at a concentration ratio of 50 and a light intensity of 1000 W/m2, photoelectric conversion efficiency increased by 0.81%. When compared to direct concentration, the photoelectric conversion efficiency increased by at least 7%. Meanwhile, the comprehensive electrical efficiency was 36.7%, which is higher than that of the normal concentration PV and comprehensive thermal system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call