Abstract

Three derivatives of chlorin e6 (1–3) were synthesized by introduction of maleimide, cysteine and glutathione at C-13 carboxyl of the chlorin scaffold. The evaluation of their PDT effects showed that compound 1, the derivative with a maleimide group, exhibited more potent photocytotoxicity against HepG2 cells (IC[Formula: see text] 3.2 [Formula: see text]M) than 2 (IC[Formula: see text] 6.7 [Formula: see text]M) and 3 (IC[Formula: see text] 10.2 [Formula: see text]M), although the cellular uptake of 1 was slightly lower than that of 2 and 3. The high PDT effect of 1 was found to be in agreement with the high level of intracellular singlet oxygen. Further investigation of the mechanism revealed that 1 can significantly lower the GSH level in HepG2 cells due to the addiction reaction of maleimide and GSH, thus resulting in the reduction of ROS scavenging and the enhancement of cellular oxidative stress. This approach to improve PDT effects of photosensitizers by means of interfering with the cellular redox system and enhancing cellular oxidative stress offers a new strategy for development of photosensitizers in cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.