Abstract
A risk score model was developed based in a population of 1,224 individuals from the general population without known diabetes aging 35 years or more from an urban Brazilian population sample in order to select individuals who should be screened in subsequent testing and improve the efficacy of public health assurance. External validation was performed in a second, independent, population from a different city ascertained through a similar epidemiological protocol. The risk score was developed by multiple logistic regression and model performance and cutoff values were derived from a receiver operating characteristic curve. Model's capacity of predicting fasting blood glucose levels was tested analyzing data from a 5-year follow-up protocol conducted in the general population. Items independently and significantly associated with diabetes were age, BMI and known hypertension. Sensitivity, specificity and proportion of further testing necessary for the best cutoff value were 75.9, 66.9 and 37.2%, respectively. External validation confirmed the model's adequacy (AUC equal to 0.72). Finally, model score was also capable of predicting fasting blood glucose progression in non-diabetic individuals in a 5-year follow-up period. In conclusion, this simple diabetes risk score was able to identify individuals with an increased likelihood of having diabetes and it can be used to stratify subpopulations in which performing of subsequent tests is necessary and probably cost-effective.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have