Abstract

BackgroundBiochemical recurrence (BCR) after initial treatment, such as radical prostatectomy, is the most frequently adopted prognostic factor for patients who suffer from prostate cancer (PCa). In this study, we aimed to construct a prognostic model consisting of gene expression profiles to predict BCR-free survival.MethodsWe analyzed 70 metabolic pathways in 152 normal prostate samples and 494 PCa samples from the UCSC Xena dataset (training set) via gene set enrichment analysis (GSEA) to select BCR-related genes and constructed a BCR-related gene risk score (RS) model. We tested the power of our model using Kaplan–Meier (K–M) plots and receiver operator characteristic (ROC) curves. We performed univariate and multivariate analyses of RS using other clinicopathological features and established a nomogram model, which has stronger prediction ability. We used GSE70770 and DFKZ 2018 datasets to validate the results. Finally, we performed differential expression and quantitative real-time polymerase chain reaction analyses of the UCSC data for further verification of the findings.ResultsA total of 194 core enriched genes were obtained through GSEA, among which 16 BCR-related genes were selected and a three-gene RS model based on the expression levels of CA14, LRAT, and MGAT5B was constructed. The outcomes of the K–M plots and ROC curves verified the accuracy of the RS model. We identified the Gleason score, pathologic T stage, and RS model as independent predictors through univariate and multivariate Cox analyses and constructed a nomogram model that presented better predictability than the RS model. The outcomes of the validation set were consistent with those of the training set. Finally, the results of differential expression analyses support the effectiveness of our model.ConclusionWe constructed an RS model based on metabolic genes that could predict the prognosis of PCa patients. The model can be easily used in clinical applications and provide important insights into future research on the underlying mechanism of PCa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.