Abstract

BackgroundGenomic prediction of breeding values involves a so-called training analysis that predicts the influence of small genomic regions by regression of observed information on marker genotypes for a given population of individuals. Available observations may take the form of individual phenotypes, repeated observations, records on close family members such as progeny, estimated breeding values (EBV) or their deregressed counterparts from genetic evaluations. The literature indicates that researchers are inconsistent in their approach to using EBV or deregressed data, and as to using the appropriate methods for weighting some data sources to account for heterogeneous variance.MethodsA logical approach to using information for genomic prediction is introduced, which demonstrates the appropriate weights for analyzing observations with heterogeneous variance and explains the need for and the manner in which EBV should have parent average effects removed, be deregressed and weighted.ResultsAn appropriate deregression for genomic regression analyses is EBV/r2 where EBV excludes parent information and r2 is the reliability of that EBV. The appropriate weights for deregressed breeding values are neither the reliability nor the prediction error variance, two alternatives that have been used in published studies, but the ratio (1 - h2)/[(c + (1 - r2)/r2)h2] where c > 0 is the fraction of genetic variance not explained by markers.ConclusionsPhenotypic information on some individuals and deregressed data on others can be combined in genomic analyses using appropriate weighting.

Highlights

  • Genomic prediction of breeding values involves a so-called training analysis that predicts the influence of small genomic regions by regression of observed information on marker genotypes for a given population of individuals

  • An Interbull survey [9] of methods being used in various countries for genomic prediction of dairy cattle reported that some researchers used deregressed proofs weighted with corresponding reliabilities, others used daughter yield deviation (DYD) weighted by effective daughter contributions, while yet others used estimated breeding values (EBV) without any weighting

  • The objective of this paper is to present a logical argument for using deregressed information, appropriately weighted for analysis

Read more

Summary

Introduction

Genomic prediction of breeding values involves a so-called training analysis that predicts the influence of small genomic regions by regression of observed information on marker genotypes for a given population of individuals. Available observations may take the form of individual phenotypes, repeated observations, records on close family members such as progeny, estimated breeding values (EBV) or their deregressed counterparts from genetic evaluations. Training populations might involve genotyped animals with alternative types of information including single or repeated measures of individual phenotypic performance, information on progeny, estimated breeding values (EBV) from genetic evaluations, or a pooled mixture of more than one of these information sources. An Interbull survey [9] of methods being used in various countries for genomic prediction of dairy cattle reported that some researchers used deregressed proofs weighted with corresponding reliabilities, others used DYD weighted by effective daughter contributions, while yet others used EBV without any weighting. We consider the residual variance from the perspective of an additive model but the deregression and weighting concepts extend to analyses that include dominance and epistasis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.