Abstract

BackgroundThe objective of this study was to introduce a genome-wide association study (GWAS) in conjunction with segregation analysis on monogenic categorical traits. Genotype probabilities calculated from phenotypes, mode of inheritance and pedigree information, are expressed as the expected allele count (EAC) (range 0 to 2), and are inherited additively, by definition, unlike the original phenotypes, which are non-additive and could be of incomplete penetrance. The EAC are regressed on the single nucleotide polymorphism (SNP) genotypes, similar to an additive GWAS. In this study, horn phenotypes in Merino sheep are used to illustrate the advantages of using the segregation GWAS, a trait believed to be monogenic, affected by dominance, sex-dependent expression and likely affected by incomplete penetrance. We also used simulation to investigate whether incomplete penetrance can cause prediction errors in Merino sheep for horn status.ResultsEstimated penetrance values differed between the sexes, where males showed almost complete penetrance, especially for horned and polled phenotypes, while females had low penetrance values for the horned status. This suggests that females homozygous for the ‘horned allele’ have a horned phenotype in only 22% of the cases while 78% will be knobbed or have scurs. The GWAS using EAC on 4001 animals and 510,174 SNP genotypes from the Illumina Ovine high-density (600k) chip gave a stronger association compared to using actual phenotypes. The correlation between the EAC and the allele count of the SNP with the highest –log10(p-value) was 0.73 in males and 0.67 in females. Simulations using penetrance values found by the segregation analyses resulted in higher correlations between the EAC and the causative mutation (0.95 for males and 0.89 for females, respectively), suggesting that the most predictive SNP is not in full LD with the causative mutation.ConclusionsOur results show clear differences in penetrance values between males and female Merino sheep for horn status. Segregation analysis for a trait with mutually exclusive phenotypes, non-additive inheritance, and/or incomplete penetrance can lead to considerably more power in a GWAS because the linearized genotype probabilities are additive and can accommodate incomplete penetrance. This method can be extended to any monogenic controlled categorical trait of which the phenotypes are mutually exclusive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.