Abstract

BackgroundThe objective of this study was to evaluate the accuracy of genomic predictions for rib eye area (REA), backfat thickness (BFT), and hot carcass weight (HCW) in Nellore beef cattle from Brazilian commercial herds using different prediction models.MethodsPhenotypic data from 1756 Nellore steers from ten commercial herds in Brazil were used. Animals were offspring of 294 sires and 1546 dams, reared on pasture, feedlot finished, and slaughtered at approximately 2 years of age. All animals were genotyped using a 777k Illumina Bovine HD SNP chip. Accuracy of genomic predictions of breeding values was evaluated by using a 5-fold cross-validation scheme and considering three models: Bayesian ridge regression (BRR), Bayes C (BC) and Bayesian Lasso (BL), and two types of response variables: traditional estimated breeding value (EBV), and phenotype adjusted for fixed effects (Y*).ResultsThe prediction accuracies achieved with the BRR model were equal to 0.25 (BFT), 0.33 (HCW) and 0.36 (REA) when EBV was used as response variable, and 0.21 (BFT), 0.37 (HCW) and 0.46 (REA) when using Y*. Results obtained with the BC and BL models were similar. Accuracies increased for traits with a higher heritability, and using Y* instead of EBV as response variable resulted in higher accuracy when heritability was higher.ConclusionsOur results indicate that the accuracy of genomic prediction of carcass traits in Nellore cattle is moderate to high. Prediction of genomic breeding values from adjusted phenotypes Y* was more accurate than from EBV, especially for highly heritable traits. The three models considered (BRR, BC and BL) led to similar predictive abilities and, thus, either one could be used to implement genomic prediction for carcass traits in Nellore cattle.

Highlights

  • The objective of this study was to evaluate the accuracy of genomic predictions for rib eye area (REA), backfat thickness (BFT), and hot carcass weight (HCW) in Nellore beef cattle from Brazilian commercial herds using different prediction models

  • The existence of linkage disequilibrium (LD) between single nucleotide polymorphism (SNP) and quantitative trait loci (QTL) is an essential assumption in the use of SNPs to predict the genetic merit of animals [5]

  • Y* phenotype adjusted for fixed effects, EBV estimated breeding value, yi pseudo-phenotype, Bayesian ridge regression (BRR) bayesian ridge regression, BC Bayes C, BL Bayesian Lasso reveal relevant differences between models, which can be attributed to the large number of regression coefficients that need to be inferred from a small number of samples (n

Read more

Summary

Introduction

The objective of this study was to evaluate the accuracy of genomic predictions for rib eye area (REA), backfat thickness (BFT), and hot carcass weight (HCW) in Nellore beef cattle from Brazilian commercial herds using different prediction models. Nellore is the predominant beef cattle breed in Brazil, which makes it an important breed in the world beef market [1]. In this context, carcass traits are of paramount importance. Genetic evaluations of carcass traits recorded post-mortem are important to improve Nellore cattle, routine measurements of these traits are difficult and/or expensive to obtain. Estimating genetic merit of young animals becomes challenging, especially when using traditional pedigree-based methods, and breeding programs usually do not include these traits formally in their breeding goals [1]. Genomic selection could be an alternative method to achieve accurate genetic evaluations, which, in particular may, help contribute to genetic improvement for carcass traits

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call