Abstract
Optical properties of ZnO nanorods (NRs) grown by vapour–liquid–solid (VLS) technique on 4H-p-SiC substrates were probed by cathodoluminescence (CL) measurements at room temperature and at 5 K complemented with electroluminescence. At room temperature the CL spectra for defect related emission intensity was enhanced with the electron beam penetration depth. We observed a variation in defect related green emission along the nanorod axis. This indicates a relatively poor structural quality near the interface between ZnO NRs and p-SiC substrate. We associate the green emission with oxygen vacancies. Analysis of the low-temperature (5 K) emission spectra in the UV region suggests that the synthesized nanorods contain shallow donors and acceptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.