Abstract

ZnO nanorods (NRs) are grown in different atmospheres (argon, air, oxygen and nitrogen) by using the vapor–liquid–solid (VLS) method. The influence of different growth atmospheres on the luminescence properties has been investigated by using the photoluminescence (PL), cathodoluminescence (CL) and electroluminescence (EL) spectra measurements at room temperature. The PL spectra investigations reveal that the air, the oxygen and the nitrogen growth atmospheres have strongly affected the oxygen interstitial (Oi) and oxygen vacancy (VO) related deep level emission (DLE) bands in ZnO and this fact is also found consistent with the cathodoluminescence (CL) and electroluminescence (EL) spectra investigations. The color rendering investigations reveal that the growth atmospheres have also influenced the color quality of the emitted light. These results indicate that the defects related emissions from the band gap of ZnO NRs can be tuned by using different growth atmospheres. These results can be useful for the development of white light emitting diodes (WLEDs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.