Abstract
A variety of genetic and epigenetic abnormalities were characterized over the last years in Hodgkin and Reed-Sternberg (H-RS) cells of classic Hodgkin Lymphoma (cHL). It was speculated that simultaneous inhibition of multiple signalling pathways might be a promising strategy to target this tumor entity. In the present study we tested the effect of histone deacetylase (HDAC) inhibition using depsipeptide (also known as romidepsin, FK228, FR901228 or NSC-630176) in cHL cell lines in vitro. Molecular mechanisms of toxicity were analyzed using RNA expression analysis and functional assays. It is shown that depsipeptide is effective at submicromolar concentrations and acts mainly by apoptosis induction, upregulation of p21 and cell cycle inhibition in G2/M. Of special note, HDAC mediated toxicity in H-RS cells does not require RelA/p65 downregulation, which was previously shown to drive the malignant phenotype of H-RS cells. In summary, depsipeptide induced protein acetylation results in transcriptional changes of a large number of pathogenetically relevant genes and increased RelA/p65 binding activity in cHL cell lines. Our preclinical data suggest that HDAC inhibition using depsipeptide might be a promising approach for the treatment of cHL patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.