Abstract

The heterojunction of ZnO was deposited on hydrogenated TiO2 nanotube arrays (H–TiO2) by atomic layer deposition (ALD) with various cycles. The ZnO was uniformly wrapped with the H–TiO2 samples and the thickness could be accurately controlled by the cycle numbers of ALD. The higher growth rate ~2.7 Å/cycle was obtained due to the surface amorphous layer, compared with the air-treated samples (A-TiO2), ~2.3 Å/cycle. When the cycle numbers increased to 200, nanowire arrays appeared. Interestingly, the absorption in the visible light region improved more significantly when ALD ZnO was employed for the H–TiO2 rather than the A-TiO2 samples. The H–TiO2 samples with 42 nm of ALD ZnO exhibited enhanced photoelectrochemical water splitting performances, compared with the A-TiO2 with 42 nm of ALD ZnO. This was related to the higher degree of the electronic band bending and improved photo-response in the UV and visible light region, resulting from the oxygen vacancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call