Abstract
To investigate the role of T lymphocytes in osteoclastogenesis, we performed in vivo depletion of CD4 and/or CD8 T lymphocyte subsets and evaluated in vitro osteoclast-like cell (OCL) formation. T lymphocyte depletion (TLD) with mAbs was confirmed 24 h later by flow cytometry. OCL formation was stimulated with 1, 25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) in bone marrow and with recombinant mouse (rm) receptor activator of NF-kappaB ligand (RANK-L) and rmM-CSF in bone marrow and spleen cell cultures. OCL formation was up to 2-fold greater in 1,25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice than in those from intact mice. In contrast, TLD did not alter OCL formation in bone marrow or spleen cell cultures that were stimulated with rmRANK-L and rmM-CSF. The effects of TLD seemed to be mediated by enhanced PG synthesis, because the PGE(2) concentration in the medium of 1, 25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice was 5-fold higher than that in cultures from intact mice, and indomethacin treatment abolished the stimulatory effect of TLD on OCL formation. There was a 2-fold increase in RANK-L expression and an almost complete suppression of osteoprotegerin expression in 1, 25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice compared with those from intact mice. Although there was a small (20%) increase in IL-1alpha expression in 1, 25-(OH)(2)D(3)-stimulated bone marrow cultures from TLD mice, TLD in mice lacking type I IL-1R and wild-type mice produced similar effects on OCL formation. Our data demonstrate that TLD up-regulates OCL formation in vitro by increasing PG production, which, in turn, produces reciprocal changes in RANK-L and osteoprotegerin expression. These results suggest that T lymphocytes influence osteoclastogenesis by altering bone marrow stromal cell function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.