Abstract

We study a broad class of asymmetric copulas introduced by Liebscher (2008) as a combination of multiple – usually symmetric – copulas. The main thrust of the paper is to provide new theoretical properties including exact tail dependence expressions and stability properties. A subclass of Liebscher copulas obtained by combining comonotonic copulas is studied in more detail.We establish further dependence properties for copulas of this class and show that they are characterized by an arbitrary number of singular components. Furthermore, we introduce a novel iterative representation for general Liebscher copulas which de facto insures uniform margins, thus relaxing a constraint of Liebscher’s original construction. Besides, we show that this iterative construction proves useful for inference by developing an Approximate Bayesian computation sampling scheme. This inferential procedure is demonstrated on simulated data and is compared to a likelihood-based approach in a setting where the latter is available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.