Abstract
This paper discusses how two classes of approximate computation algorithms can be adapted, in a modular fashion, to achieve exact statistical inference from differentially private data products. Considered are approximate Bayesian computation for Bayesian inference, and Monte Carlo Expectation-Maximization for likelihood inference. Up to Monte Carlo error, inference from these algorithms is exact with respect to the joint specification of both the analyst's original data model, and the curator's differential privacy mechanism. Highlighted is a duality between approximate computation on exact data, and exact computation on approximate data, which can be leveraged by a well-designed computational procedure for statistical inference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.