Abstract

Artificial Intelligence (AI) has attracted a large amount of attention in recent years. However, several new problems, such as privacy violations, security issues, or effectiveness, have been emerging. Differential privacy has several attractive properties that make it quite valuable for AI, such as privacy preservation, security, randomization, composition, and stability. Therefore, this paper presents differential privacy mechanisms for multi-agent systems, reinforcement learning, and knowledge transfer based on those properties, which proves that current AI can benefit from differential privacy mechanisms. In addition, the previous usage of differential privacy mechanisms in private machine learning, distributed machine learning, and fairness in models is discussed, bringing several possible avenues to use differential privacy mechanisms in AI. The purpose of this paper is to deliver the initial idea of how to integrate AI with differential privacy mechanisms and to explore more possibilities to improve AIs performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.