Abstract
As-grown defects in 6-inch-diameter Czochralski-silicon crystals grown under different crystal growth rate conditions (0.4, 0.7, 1.1 mm/min) were studied by means of preferential etching and IR light-scattering tomography (LST). Grown-in defect images were classified into four types as follows: (a) flow patterns (wedge-shaped etch pits), (b) IR-defect images observed by LST, (c) ringlike distributed small pits, and (d) large pits. It was found by secondary ion mass spectrometry that IR defects are oxygen precipitates. Large pit defects were identified by transmission electron microscopy as large dislocation loops with a length of about 30 µm. At growth rates from 0.7 mm/min to 1.1 mm/min, flow pattern defects and IR defects coexist inside a ringlike distributed oxidation-induced stacking fault (ring-OSF) region. However, at growth rates less than 0.7 mm/min, large pit defects were observed in the region outside the ring. Characteristic ringlike distributed small pit defects were observed on the outer periphery of the ring region. Flow pattern defects were annihilated during annealing at 1100°C, while IR defects were stable at 1250°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.