Abstract

The breakdown mechanism of the 4H-SiC metal-semiconductor field effect transistor (4H-SiC MESFET) at a large drain bias is explored and the dependence of breakdown voltage on the field-plate and the step-channel is investigated by simulation. The results revealed that the breakdown occurs at the corner of the gate near to the drain. The channel step and the field-plate length have sensitive effect on the breakdown voltage. The breakdown characteristics are improved since the electric field peak is lowered at breakdown point in the step-channel and field-plate structures. The largest breakdown voltage can be achieved by optimizing the field-plate length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call