Abstract
Using a compaction simulator, it has been shown that tablet ejection force increases with increasing tableting speed during compression of powders lubricated with 1% magnesium stearate. Faster tableting speed corresponds to higher coefficient of friction, μ, but does not affect residual radial die wall (RDW) stress. The higher μ suggests the presence of less lubricant at the tablet–die wall interface due to the shorter time available for migration of lubricant to the interface. This mechanism can also explain the sudden occurrence of powder sticking problem upon formulation scale up. The elevated ejection force due to higher μ also results in higher RDW stress at the moment of slip initiation, which proportionally increases ejection force.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.