Abstract

External lubrication is a highly valuable alternative lubrication method as it minimizes the negative impact on tablet properties encountered when using internal lubrication. In current study, experiments were performed with automated external lubrication systems implemented in a compaction simulator and rotary tablet press using three lubricants (magnesium stearate (MgSt), sodium stearyl fumarate (SSF) and glyceryl dibehenate (DBHG)). The effect of process parameters related to the tableting process (main compaction pressure and tableting speed) and external lubrication systems (spraying time, atomizing pressure, dust extraction system and lubricant feed rate) on the responses was studied for a placebo formulation which is non-processable without lubrication. Low and comparable ejection forces were recorded for all lubricants on both tablet presses. No negative effect on tensile strength was observed for process parameters of both external lubrication systems, irrespective of lubricant type. Disintegration times were slightly higher for SSF compared to MgSt and DBHG for the tablets produced on the rotary tablet press, linked to higher lubricant concentrations on the tablets for SSF, while disintegration times were similar for all lubricant types on the compaction simulator. The potential of external lubrication for implementation on production scale tableting equipment and during scale-up was demonstrated for multiple lubricants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call