Abstract

The dentate gyrus (DG) as part of the hippocampal formation is believed to serve as a gatekeeper with strong inhibitory properties against uncontrolled propagation of neuronal activity from the entorhinal cortex and neocortical structures. In temporal lobe epilepsy, the DG becomes hyperexcitable and loses its gate function, enabling propagation of ictal activity into downstream structures such as CA3 and CA1 areas. Furthermore, the DG, apart from facilitating propagation, may also be able to autonomously generate ictal activity, but this point has remained open so far. To tackle this question, we used intrinsic optical imaging in combination with electrophysiological recordings in brain slice preparations from rats in which status epilepticus had been induced electrically several weeks prior to measurements. Upon omission of Mg++ from the artificial cerebrospinal fluid, in 15 out of 33 slices (45.4%) from 9 out of 13 epileptic animals (69.2%), spontaneous and autonomous ictal activity, mostly seizure-like events (SLE), was observed in the DG. This activity manifested independently from SLE generated in adjacent cortices and never occurred in slices from control animals. SLE generated in the DG differed from those with origin in the entorhinal or temporal cortex by longer latency to the first event after Mg++ omission (p<0.001), a higher SLE frequency (p<0.05), higher amplitude (p<0.001) and a longer SLE duration (p<0.05). We conclude that in epilepsy, the DG, in addition to facilitated gating of activity from upstream structures, can serve as an independent generator of ictal activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.