Abstract

The dentate gyrus (DG) is a gateway that regulates seizure activity in the hippocampus. We investigated the site of action of lamotrigine (LTG), an effective anticonvulsant, in the regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptor-mediated excitatory synaptic transmission on DG. Evoked AMPA and NMDA receptor-mediated excitatory postsynaptic currents (eEPSCampa and eEPSCnmda) were recorded by whole-cell patch-clamp recording from the granule cells of DG in brain slice preparation of young Wistar rats (60-120 g). Exogenously applied AMPA and NMDA-induced currents and AMPA receptor-mediated miniature EPSC (mEPSCampa) were recorded in the presence of specific antagonists. LTG inhibited both eEPSCampa and eEPSCnmda, and had no effect on exogenously applied NMDA-induced current indicating LTG inhibited glutamate release. Previous studies demonstrated that alteration in glutamate concentration in synaptic cleft causes parallel changes of eEPSCampa and eEPSCnmda. Our results showed that LTG inhibited eEPSCampa significantly more than eEPSCnmda (p < 0.05), suggesting that LTG may also have blocked the postsynaptic AMPA receptor. The hypothesis is further supported by the facts that; (1) LTG (30-100 microM) inhibited direct exogenously applied AMPA-induced currents (to 90%), (2) LTG significantly reduced the amplitude, but not the frequency of mEPSCampa and asynchronous (EPSC), and (3) LTG-induced reduction of eEPSCampa was not associated with a modification of the paired-pulse ratio. To sum up, LTG exerts a postsynaptic inhibitory mechanism on the AMPA receptor. Our results demonstrate that LTG suppresses postsynaptic AMPA receptors and reduces glutamate release in granule cells of DG. The postsynaptic effect can be one of the underlying mechanisms of LTG's anticonvulsant action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.